2013年6月7日星期五

Spooky action put to order: Different types of 'entanglement' classified

Spooky action put to order: Different types of 'entanglement' classified

June 6, 2013 — "I think I can safely say that nobody understands quantum mechanics." Thus spoke the American physicist Richard Feynman -- underlining that even leading scientists struggle to develop an intuitive feeling for quantum mechanics. One reason for this is that quantum phenomena often have no counterpart in classical physics. A typical example is the quantum entanglement: Entangled particles seem to directly influence one another, no matter how widely separated they are. It looks as if the particles can 'communicate' with one another across arbitrary distances. Albert Einstein, famously, called this seemingly paradoxical behaviour "spooky action at a distance."






When more than two particles are entangled, the mutual influence between them can come in different forms. These different manifestations of the entanglement phenomenon are not fully understood, and so far there exists no general method to systematically group entangled states into categories. Reporting in the journal Science, a group of mathematicians and physicists around Matthias Christandl, professor at the Institute for Theoretical Physics, provides an important contribution towards putting the "spooky action" to order. The team has developed a method that allows them to assigning a given quantum state to a class of possible entanglement states. Such a method is important because, among other things, it helps to predict how potentially useful the quantum state can be in technological applications.

Putting entangled states in their place

Together with Brent Doran, a professor in the Department for Mathematics at ETH Zurich, and David Gross, a professor at the University of Freiburg in Germany, Christandl and his PhD student Michael Walter, first author of the Science publication, introduce a method in which different classes of entangled states are associated with geometric objects known as polytopes. These objects represent the "space" that is available to the states of a particular entanglement class. Whether or not a given state belongs to a specific polytope can be determined by making a number of measurements on the individual particles. Importantly, there is no need to measure several particles simultaneously, as is necessary in other methods. The possibility to characterise entangled states through measurements on individual particles makes the new approach efficient, and means also that it can be extended to systems with several particles.

The ability to gain information about entangled states of several particles is a central aspect of this work, explains Christandl: "For three particles, there are two fundamentally different types of entanglement, one of which is generally considered more 'useful' than the other. For four particles, there is already an infinite number of ways to entangle the particles. And with every additional particle, the complexity of this situation gets even more complex." This quickly growing degree of complexity explains why, despite a large number of works that have been written on entangled states, only very few systems with more than a handful of particles have been fully characterized. "Our method of entanglement polytopes helps to tame this complexity by classifying the states into finitely many families," adds Michael Walter.

Quantum technologies on the horizon

Quantum systems with several particles are of interest because they could take an important role in future technologies. In recent years, scientists have proposed, and partly implemented, a wide variety of applications that use quantum-mechanical properties to do things that are outright impossible in the framework of classical physics. These applications range from the tap-proof transmission of messages, to efficient algorithms for solving computational problems, to tech-niques that improve the resolution of photolithographic methods. In these applications, entangled states are an essential resource, precisely because they embody a fundamental quantum-mechanical phenomenon with no counterpart in classical physics. When suitably used, these complex states can open up avenues to novel applications.

A perfect match

The link between quantum mechanical states and geometric shapes has something to offer not only to physicists, but also to mathematicians. According to Doran, the mathematical methods that have been developed for this project may be exploited in other areas of mathematics and physics, but also in theoretical computer science. "It usually makes pure mathematicians a bit uncomfortable if someone with an 'applied' problem wants to hit it with fancy mathematical machinery, because the fit of theory to problem is rarely good," says Doran. "Here it is perfect. The potential for long-term mutually beneficial feedback between pure mathematicians and quantum information theory and experiment is quite substantial."

The method of entanglement polytopes, however, is more than just an elegant mathematical construct. The researchers have shown in their calculations that the technique should work reliably under realistic experimental conditions, signalling that the new method can be used directly in those systems in which the novel quantum technologies are to be implemented. And such practical applications might eventually help to gain a better understand of quantum mechanics.



Welcome to SUV System Ltd!

SUV System Ltd is ISO 90012008 Certified electronics distributor with 10 years of experiences.

We have built up long term business relationship with about many companies which are stockers and authorized agents. we have a steady and reliable supply to meet customer's demands to the greatest extent .Confidently, we are able to lower your cost and support your business with our years of professional service.

SUV System Ltd is Electronic Components Distributor Supplies,Find Quality Electronic Components Supplies Products IC(Integrated Circuits),Connectors,Capacitor,Resistors,Diodes,Transistors,LED at Suvsystem.com. Sourcing Other Energy, Environment, Excess Inventory Products from Manufacturers and Suppliers at Suvsystem.com

Electronic Components distributor:http://www.suvsystem.com

Connectors Distributor:http://www.suvsystem.com/l/Connectors-1.html

IC Distributor:http://www.suvsystem.com/l/IC(Integrated-Circuits)-1.html

LED Distributor:http://www.suvsystem.com/l/LED-1.html

Capacitor Distributor:http://www.suvsystem.com/l/Capacitor-1.html

Transistor Distributor:http://www.suvsystem.com/l/Transistors-1.html

Resistor Distributor:http://www.suvsystem.com/l/Resistors-1.html

Diode Distributor:http://www.suvsystem.com/l/Diodes-1.html

SUV System Ltd insists on the managing faith ofsincereness,speciality,foresight, win-win,so we build up stable-relationship customers located all over the world, including the States, Europe, Argentina, UAE, Malaysia, Australia,and India etc

we are focus on the following fields,and hope we can help you.


CPF1206B4R87E1 CPF1206B4R7E1 CPF1206B4R75E1 CPF1206B4K99E1 CPF1206B4K87E1 CPF1206B4K7E1 CPF1206B4K7E CPF1206B4K75E1 CPF1206B4K64E1 CPF1206B4K53E1 CPF1206B4K42E1 CPF1206B4K3E1 CPF1206B4K32E1 CPF1206B4K22E1 CPF1206B4K12E1 CPF1206B4K02E1 CPF1206B49R9E1 CPF1206B60R4E1 CPF1206B60K4E1 CPF1206B604RE1 CPF1206B604KE1 CPF1206B5R9E1 CPF1206B5R76E1 CPF1206B5R6E1 CPF1206B5R62E1 CPF1206B5R49E1 CPF1206B5R36E1 CPF1206B5R23E1 CPF1206B5R1E1 CPF1206B5R11E1 CPF1206B5K9E1 CPF1206B5K76E1 CPF1206B5K6E1 CPF1206B5K62E1 CPF1206B5K49E1 CPF1206B5K36E1 CPF1206B5K23E1 CPF1206B5K1E1 CPF1206B5K11E1 CPF1206B59RE1
http://www.suvsystem.com/a/2691.aspx

没有评论:

发表评论